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Introduction

In this study we consider the Rosenau equation with power type nonlinearity:

ut + ux + uxxxxt + (up)x = 0. (1)

Rosenau equation is derived to model dense discrete dynamical systems [1]. The
global well-posedness of Cauchy problem associated with (1) studied in [2] for the
initial data u(x ,0) ∈ H4

0(R).
We propose a numerical scheme combining Fourier pseudo-spectral method in
space and a second order finite difference method in time. We prove that our
numerical scheme has accuracy of order O(∆t2 + hm).
We then present several numerical experiments to check the efficiency of our
numerical scheme. For this aim, we first generate an initial solitary wave solution
by using Petviashvili’s method, as there are no exact solitary wave solutions of
(1). We investigate the time evolution of numerically generated solution by using
the proposed scheme given by (2). The errors in conserved quantities are also
presented.

Conserved Quantities

A Lagrangian for the Rosenau equation is given by:

L(Ux,Ut,Uxxx,Uxxt) = UxUt + UxxxUxxt + (Ux)
2 +

2

p + 1
(Ux)

p+1

where u := Ux and p ∈ Z≥0 [3]. The following conserved quantities are obtained
by using the Noether’s theorem.

Energy
∫
R(u

2 + 2
p+1u

p+1)dx

Momentum
∫
R(u

2 + u2xx)dx

Mass
∫
R udx

Discretization

We discretize Rosenau equation (1) as follows:

(1 + D4
N)

(
Un+1 − Un−1

2∆t

)
+ DN

(
Un+1 + Un−1

2

)
+ DN((U

n)p) = 0 (2)

and for finding U1, we use the following:

(1 + D4
N)

(
U1 − U0

∆t

)
+ DN

(
U1 + U0

2

)
+ DN((U

0)p) = 0.

We solve (2) by using FFT algorithm.

Lemma

Let f be any element of H3(0,T ) and T
∆t ∈ Z≥2 , φ be any element of BN,

m ∈ Z≥1 , Ω := (0,L) and g ∈ L2(Ω). Then we have following estimates:√√√√√∆t

T
∆t−1∑
k=1

∣∣∣∣f k+1 − f k−1

2∆t
− ∂tf k

∣∣∣∣2 ≤ C∆t2||f ||H3(0,T ) (3)√√√√√∆t

T
∆t−1∑
k=1

∣∣∣∣f k+1 − 2f k + f k−1

∆t2

∣∣∣∣2 ≤ C ||f ||H2(0,T ) (4)

||INφ||H1 ≤ ||φ||H1 (5)

||g(x)− INg(x)||L2(Ω) ≤ Chm||g(x)||Hm(Ω) (6)

Truncation Error Analysis in Time

Assume that solution u of (1) belongs to L∞
(
0,T ;Hm+1

)
∩ H3(0,T ;H4). Let

UN(x ,t) := PNu(x ,t) and Un := IUN be its discrete interpolation. Then

(1 + D4
N)

(
Un+1 − Un−1

2∆t

)
+ DN

(
Un+1 + Un−1

2

)
+ DN((U

n)p) = τ n

where τ n satisfies the estimate

||τ ||ℓ2(0,T ;ℓ2) ≤ C (∆t2 + hm)

and C only depends on exact solution u.
——————————————————————————————————
Sketch of Proof : Analysis of linear terms follows from estimates (3) and (4). Also, we can
estimate nonlinear term (Un)p by using (5) and (6).

Solitary Wave Solutions

The ansatz u(x ,t) = Q(x − ct) gives (c − 1)Q + cQ (4) − Qp = 0.
Non-existence results can be derived from the Pohozaev type identities [4].

▶ c < 0 and p is odd,

▶ 0 < c < 1 for all p > 1.

Existence result: Theorem 2.1 of [5] states the existence of Q for all c, p > 1.

Petviashvili Method

Applying the Fourier transform gives: (c − 1 + ck4)Q̂(k)− Q̂p(k) = 0.
The method is:

Q̂n+1(k) =
Mγ

n

c − 1 + ck4
Q̂p
n (k)

with stabilizing factor

Mn =

∫
R
(c − 1 + ck4)(Q̂n(k))

2dk∫
R
Q̂n(k)Q̂

p
n (k)dk

and optimal value of γ is p/(p − 1). See [6] for the convergence properties of this
method.

Wave Profiles

Solitary wave profiles for various nonlinearities with c = 2.
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Time Evolution of Initial Solitary Wave

Time evolution of solitary wave with c = 2 and p = 2. Here the space and time grid numbers are
N = 1000 and M = 20000 respectively.
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Relative Errors

Relative errors of energy E , momentum P and mass M for c = 2 (left panel) and c = 1.2 (right panel).
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